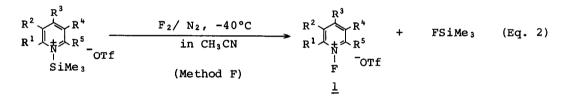

Tetrahedron Letters, Vol. 27, No. 28, pp 3271-3274, 1986 0040-4039/86 \$3.00 + .00 Printed in Great Britain Pergamon Journals Ltd.

N-FLUOROPYRIDINIUM TRIFLATE AND ITS ANALOGS, THE FIRST STABLE 1:1 SALTS OF PYRIDINE NUCLEUS AND HALOGEN ATOM

> Teruo UMEMOTO* and Kyoichi TOMITA[†] Sagami Chemical Research Center, Nishi-Ohnuma 4-4-1, Sagamihara, Kanagawa 229, Japan

N-Fluoropyridinium salts having non-nucleophilic counter-anions and their derivatives were synthesized by treating pyridine- F_2 adducts with strong Brønsted acids, their salts or trimethylsilyl esters, or Lewis acids, or by allowing F_2 to react with N-trimethylsilylpyridinium salts.

The nature of the bonding between a halogen atom and a pyridine nitrogen atom, which shares the lone paired electrons, has been of great interest for a long time from the viewpoint of molecular complex, charge-transfer complex studies, or reconsideration of the bonding related to halogens. 1) It is well known that a iodine, bromine, or chlorine cation combines with pyridine to form not 1:1 salt [PyX]⁺ but a stable 1:2 salt [Py₂X]⁺ (Py=pyridine).^{1,2}) Thus the halogen cations have a strong tendency towards two-coordination. The compounds of the type PyXY (Y=anion part) isolated so far are essentially covalent compounds or molecular complexes.²⁾ However there are no data about the fluorine compounds. The corresponding nitrogen-fluorine bonding is very interesting since a fluorine atom is remarkably different from other halogen atoms because of its highest electronegativity, great difficulty in the formation of a fluorine cation, or the lack of d-orbitals.³⁾ Meinert reported that fluorine (F_2) diluted with N₂ was bubbled into a solution of pyridine in CFCl₃ at -80°C to form $Py-F_2$ adduct as moisture-sensitive, unstable white precipitates and that it decomposed violently at more than -2°C to leave redbrown oil containing 2fluoropyridine.⁴⁾ However no physical or spectral data on the adduct itself was reported. He also suggested that the adduct had an ionic structure in a polar solvent from electrolysis experiment. 4) We now wish to report about the



† Researcher from Onoda Cement Company, Japan.

synthesis and properties of the first stable 1:1 salts, N-fluoropyridinium salts.

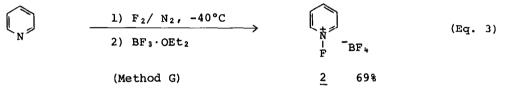
We thought that the instability of $Py-F_2$ would be due to some nucleophilicity of F⁻ in a possible ionic form (<u>B</u>, Eq. 1) and might be improved by exchanging F⁻ for a non-nucleophilic anion. The adduct prepared in CFCl₃ at -75° C was allowed to react with sodium triflate in dry CH₃CN at -40°C for 2 h to give N-fluoropyridinium triflate <u>la</u> as very stable white crystals⁵⁾ in 67% yield (Method A). It was found that <u>la</u> was synthesized conveniently by the reaction of F_2/N_2 (1/9) with pyridine in CH₃CN at -40°C followed by treatment with sodium triflate (71%, Method B). Instead of sodium triflate in Method B, trimethylsilyl triflate and triflic acid could be used successfully with the formation of trimethylsilyl fluoride and hydrogen fluoride [Method C (45% for <u>la</u>) and D (44% for <u>la</u>)], respectively. Most conveniently <u>la</u> was prepared by bubbling F_2/N_2 (1/9) into a solution of pyridine in CH₃CN at -40°C in the presence of sodium triflate (80%, Method E). The results of our reactions support that the pyridine-fluorine compound is in the ionic form <u>B</u> (Eq. 1) in CH₃CN, which is in agreement with the suggestion of Meinert.⁴

We also found a new insertion reaction of fluorine into a N-Si bond. <u>la</u> was prepared by the reaction of F_2/N_2 (1/9) with N-trimethylsilylpyridinium

triflate at -40°C (78%, Method F) (Eq. 2).

N-Fluoropyridinium salts possessing several kinds of counter-anions were prepared by our methods using $NaPF_6$, $NaClO_4$, $NaSbF_6$ etc. (Table 1). Borate 2

	№ -F [−] х	Method	Yield(%)	Mp(°C)	¹⁹ F-NMR(ppm) ^{a)}
<u>la</u>	X=OTf	A-F	44-80	185-187	-48.75
2	BF 4	G	69	90-91	-48.75
<u>3</u>	PF ₆	В	34	202 (decomp)	-48.58
4	C104	В	72	225-227.5 (with decomp)	-48.75
<u>5</u>	SbF ₆	В	51	>300	-48.82
<u>6</u>	$OSO_2C_4F_9^n$	Е	77	111-112	-48.37


Table 1 N-Fluoropyridinium salts with several kinds of counter-anions

a) In CD_3CN, CFCl_3 as int. standard, negative values mean downfield shift from CFCl_3.

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Method	Yield (%)	Мр (°С)	¹⁹ F-NMR ^{a)} (ppm)
<u>1b</u>	$R^{1}=Me$, $R^{2} \sim 5 = H$	Е	60	119.5-120.5	-37.13
<u>lc</u>	$R^{1, 5} = Me, R^{2 \sim 4} = H$	Е	73	126-128	-24.75
<u>1d</u>	R^{1} , 3 , $5=Me$, R^{2} , $4=H$	Е	49	164-166	-17.25
le	$R^1 = OMe$, $R^2 \sim 5 = H$	E	73	111.5-112.5	-0.75
<u>lf</u>	$R^2 = C1, R^1, 3^{-5} = H$	F	79	108-109	-50.59
lg	R ² , ⁴ =Cl, R ¹ , ³ , ⁵ =H	C,D,F	62,41,55	99.5-101	-52.13
<u>1h</u>	$R^2 = COOMe$, R^1 , $3 \sim 5 = H$	F	69	115-116	-50.02
<u>li</u>	$R^{1, 5} = COOMe, R^{2^{4}} = H$	E,F	72,68	140-143	-25.50

Table 2 Substituted N-fluoropyridinium triflates

a) See a) in Table 1.

was prepared by the reaction of fluorine with pyridine followed by the addition of Lewis acid BF_3OEt_2 (69%, Method G) (Eq. 3).

Physical or chemical properties of N-fluoropyridinium salts should closely be correlated with the electron density of lone paired electrons at the nitrogen site of the pyridine nucleus. A series of N-fluoropyridinium triflates having electron-donating or -withdrawing substituents were prepared by our methods (Table 2). It is worth noting that even dimethyl 2,6-pyridinedicarboxylate with much lower electron density at the nitrogen site afforded the corresponding salt <u>li</u>.

The structural assignment of the N-fluoro salts was made from spectral analyses (¹H- and ¹⁹F-NMR and Mass) and elemental analyses,⁵⁾ which were in accord with the assigned 1:1 salts. The easy formation of the 1:1 salts of fluorine atom and pyridine nucleus is in sharp contrast to other halogens forming the 1:2 salts. It must be owing to low polarizability⁶⁾ or the lack of d-orbitals of the fluorine atom, or the great difficulty in the formation of F^+ . ¹H-NMR of <u>la</u> showed signals at δ 9.33, 8.77, and 8.32 at much lower field than those of pyridine itself, which were assigned as α -H, γ -H, and β -H, respectively. The coupling constants between F and H, $J(\alpha$ -H-F)=16.0 Hz, $J(\beta$ -H-F)=4.8, and $J(\gamma$ -H-F)=2.0, were observed. It demonstrated the existence of the N-F bond. ¹⁹F-NMR showed -48.75 ppm as a broad singlet. There was no difference in the ¹⁹F-chemical shifts of <u>la</u> and <u>2-6</u>, indicating that the salts have completely ionic structure. The mass spectrum (SIMS method) of <u>la</u> exhibited a base peak at 98 (m/z) corresponding to N-fluoropyridinium cation.

In general, all the salts synthesized above are thermally stable and nonhygroscopic crystals. \underline{lg} and \underline{li} having two electron-withdrawing groups are not so stable as other salts. They have still high oxidation potential. For example, \underline{la} can oxidize \overline{l} and \overline{Br} to iodine and bromine, respectively.

Although the high electronegativity of the fluorine atom bonding to the positive nitrogen atom should cause the destabilization of the whole system

$$R^{3} \xrightarrow{R^{4}} R^{2} \xrightarrow{R^{5}} \stackrel{+}{\longrightarrow} \stackrel{+}{\xrightarrow{F}} \stackrel{+}{\xrightarrow{F} \stackrel{+}{\xrightarrow{F}} \stackrel{+}{\xrightarrow{F} \stackrel{+}{\xrightarrow{F}} \stackrel{+}{\xrightarrow{F} \stackrel{+}{\xrightarrow{F}} \stackrel{+}{\xrightarrow{F} \stackrel{+}{\xrightarrow{F$$

compared to other halogens, the N-fluoro salts revealed high stability. Evidently such high stability depends primarily on the strong N-F bonding⁷ which may be additionally reinforced by some possi-

ble back-donation⁸⁾ of p-electrons on the fluorine atom to the positive ni-trogen site, that is, the electron-deficient π -system.

The ¹⁹F-chemical shifts of N-F were sensitive to the substituents on the pyridine nuclei (Table 1 and 2). Electron-donating groups caused upfield shift compared to that of <u>la</u>, while electron-withdrawing ones brought about downfield shift. It is related to the electron density at the nitrogen sites. Only an exception was <u>li</u> of which N-F chemical shift appeared at -25.50 ppm upfield from that of <u>la</u>. That may be because steric or other neighboring effect of methoxycarbonyl groups overcame the inductive or resonance effect. In <u>lh</u> in which there is no such neighboring effect, the signal appeared at -50.02 ppm downfield from <u>la</u>.

References

- a) M.X.Boudakin, "Heterocyclic Compounds, Pyridine and Its Derivatives," ed by R.A.Abramovitch, Vol. 14, Supplement Part 2, pp. 416-420, John Willy & Sons, New York (1974) and references cited therein. b) C.Reid and R.S. Mulliken, J. Am. Chem. Soc., <u>76</u>, 3869 (1954). c) O.Hassel, Proc. Chem. Soc., 1957, 250.
- 2) A.J.Downs and C.J.Adams, "Comprehensive Inorganic Chemistry," ed by J.C. Bailar, H.J.Elmeleus, S.R.Nyholm, and A.F.Trotman-Dickenson, pp. 1346-1347, Pergamon Press, Oxford (1973) and references cited therein.
- N.Ishikawa and Y.Kobayashi, "Fusso no Kagōbutsu Sono Kagaku to Oyo," pp. 69-70, Kodansha Saientifiku, Japan (1979).
- 4) H.Meinert, Z. Chim., 5, 64 (1965).
- 5) <u>la</u> (Recryst. from CH₃CN-Et₂O); C:29.26, H:2.04, N:5.70, F:30.49, S:13.21%. Calcd for C₆H₅NF₄O₃S; C:29.10, H:2.00, N:5.70, F:30.70, S:12.95%.
- J.A.A.Ketelaar, "Chemical Constitution," p. 90, (Elsevier) Van Nostrand, Prinston, N.J. (1953).
- T.L.Cottrel, "The strengths of Chemical Bonds," 2nd ed, pp. 278-279, Butterworths, London (1958).
- W.A.Sheppard and C.M.Sharts, "Organic Fluorine Chemistry," pp. 33-35, W.A. Benjamin, New York (1969).

(Received in Japan 12 April 1986)

3274